References
Mormile, P. et al. in Soil Degradable Bioplastics for a Sustainable Modern Agriculture (ed. Malinconico, M.) 1–21 (Springer, Berlin, Heidelberg, 2017).
van Delden, S. H. et al. Current status and future challenges in implementing and upscaling vertical farming systems. Nat. Food 2, 944–956 (2021). 2021 2:12.
Sun, D. et al. An overview of the use of plastic-film mulching in China to increase crop yield and water-use efficiency. Natl Sci. Rev. 7, 1523–1526 (2020).
Liu, E. K., He, W. Q. & Yan, C. R. ‘White revolution’ to ‘white pollution’—agricultural plastic film mulch in China. Environ. Res. Lett. 9, 091001 (2014).
MacLeod, M., Arp, H. P. H., Tekman, M. B. & Jahnke, A. The global threat from plastic pollution. Science 373, 61–65 (2021).
Zhang, D. et al. Plastic pollution in croplands threatens long-term food security. Global Change Biol. 26, 3356–3367 (2020).
Fan, X., Chen, H., Xia, X. & Yu, Y. Increase in surface albedo caused by agricultural plastic film. Atmos. Sci. Lett. 16, 291–296 (2015).
Campra, P., Garcia, M., Canton, Y. & Palacios-Orueta, A. Surface temperature cooling trends and negative radiative forcing due to land use change toward greenhouse farming in southeastern Spain. J. Geophys. Res. Atmos. 113, 18109 (2008).
Hickman G. W. Greenhouse vegetable statistics. Cuesta Roble Consulting Press www.cuestaroble.com/statistics.html (2019).
Marcelis, L. F. M. in Achieving Sustainable Greenhouse Cultivation (eds Heuvelink, E. & Marcelis, L. F. M.) 1–14 (Burleigh Dodds Science Publishing, 2019).
Kozhikkodan Veettil, B. et al. Remote sensing of plastic-covered greenhouses and plastic-mulched farmlands: current trends and future perspectives. Land Degrad. Dev. 34, 591–609 (2023).
Jiménez-Lao, R., Aguilar, F. J., Nemmaoui, A. & Aguilar, M. A. Remote sensing of agricultural greenhouses and plastic-mulched farmland: an analysis of worldwide research. Remote Sens. 12, 2649 (2020).
Gao, C., Wu, Q., Dyck, M., Lv, J. & He, H. Greenhouse area detection in Guanzhong Plain, Shaanxi, China: spatio-temporal change and suitability classification. Int. J. Digit. Earth 15, 226–248 (2022).
Ma, A., Chen, D., Zhong, Y., Zheng, Z. & Zhang, L. National-scale greenhouse mapping for high spatial resolution remote sensing imagery using a dense object dual-task deep learning framework: a case study of China. ISPRS J. Photogramm. Remote Sens. 181, 279–294 (2021).
Ou, C. et al. Landsat-derived annual maps of agricultural greenhouse in Shandong Province, China from 1989 to 2018. Remote Sens. 13, 4830 (2021).
Chen, Z. et al. A convolutional neural network for large-scale greenhouse extraction from satellite images considering spatial features. Remote Sens. 14, 4908 (2022).
Zhang, P. et al. Pixel–scene–pixel–object sample transferring: a labor-free approach for high-resolution plastic greenhouse mapping. IEEE Trans. Geosci. Remote Sens. 61, 1–17 (2023).
Senel, G., Aguilar, M. A., Aguilar, F. J., Nemmaoui, A. & Goksel, C. A comprehensive benchmarking of the available spectral indices based on Sentinel-2 for large-scale mapping of plastic-covered greenhouses. IEEE J. Select. Top. Appl. Earth Obs. Remote Sens. 16, 6601–6613 (2023).
Aguilar, M. A., Vallario, A., Aguilar, F. J., Lorca, A. G. & Parente, C. Object-based greenhouse horticultural crop identification from multi-temporal satellite imagery: a case study in Almeria, Spain. Remote Sens. 7, 7378–7401 (2015).
Novelli, A., Aguilar, M. A., Nemmaoui, A., Aguilar, F. J. & Tarantino, E. Performance evaluation of object based greenhouse detection from Sentinel-2 MSI and Landsat 8 OLI data: a case study from Almería (Spain). Int. J. Appl. Earth Obs. Geoinf. 52, 403–411 (2016).
Nemmaoui, A., Aguilar, M. A., Aguilar, F. J., Novelli, A. & Lorca, A. G. Greenhouse crop identification from multi-temporal multi-sensor satellite imagery using object-based approach: a case study from Almería (Spain). Remote Sens. 10, 1751 (2018).
Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).
Chang, J. et al. Does growing vegetables in plastic greenhouses enhance regional ecosystem services beyond the food supply? Front. Ecol. Environ. 11, 43–49 (2013).
Fischer, J. et al. Should agricultural policies encourage land sparing or wildlife-friendly farming? Front. Ecol. Environ. 6, 380–385 (2008).
Huang, Y., Liu, Q., Jia, W., Yan, C. & Wang, J. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ. Pollut. 260, 114096 (2020).
Dahl, M. et al. A temporal record of microplastic pollution in Mediterranean seagrass soils. Environ. Pollut. 273, 116451 (2021).
Ntinas, G. K., Neumair, M., Tsadilas, C. D. & Meyer, J. Carbon footprint and cumulative energy demand of greenhouse and open-field tomato cultivation systems under Southern and Central European climatic conditions. J. Clean. Prod. 142, 3617–3626 (2017).
Paeth, H., Born, K., Girmes, R., Podzun, R. & Jacob, D. Regional climate change in tropical and Northern Africa due to greenhouse forcing and land use changes. J. Clim. 22, 114–132 (2009).
Zhang, J., Zhang, K., Liu, J. & Ban-Weiss, G. Revisiting the climate impacts of cool roofs around the globe using an Earth system model. Environ. Res. Lett. 11, 084014 (2016).
Assessment of Agricultural Plastics and Their Sustainability—A Call for Action (FAO, 2021).
Kenya’s $800 million flower market is seeing a boost, thanks to China. CNN https://edition.cnn.com/2018/10/08/africa/kenya-china-flower-market/index.html (2018).
Nemali, K. History of controlled environment horticulture: greenhouses. HortScience 57, 239–246 (2022).
Zhou, L. & Xiong, L. Y. Natural topographic controls on the spatial distribution of poverty-stricken counties in China. Appl. Geogr. 90, 282–292 (2018).
Zhang, P. et al. A novel index for robust and large-scale mapping of plastic greenhouse from Sentinel-2 images. Remote Sens. Environ. 276, 113042 (2022).
Orzolek, M. A Guide to the Manufacture, Performance, and Potential of Plastics in Agriculture (Elsevier, 2017).
Gertel, J. & Sippel, S. R. Seasonal Workers in Mediterranean Agriculture: The Social Costs of Eating Fresh (Routledge, 2014).
Li, H., Gan, Y., Wu, Y. & Guo, L. EAGNet: a method for automatic extraction of agricultural greenhouses from high spatial resolution remote sensing images based on hybrid multi-attention. Comput. Electron. Agric. 202, 107431 (2022).
La Cecilia, D., Tom, M., Stamm, C. & Odermatt, D. Pixel-based mapping of open field and protected agriculture using constrained Sentinel-2 data. ISPRS Open J. Photogramm. Remote Sens. 8, 100033 (2023).
Benabderrazik, K., Kopainsky, B., Tazi, L., Jörin, J. & Six, J. Agricultural intensification can no longer ignore water conservation—a systemic modelling approach to the case of tomato producers in Morocco. Agric. Water Manage. 256, 107082 (2021).
Zhang, Y. et al. Oral intake exposure to phthalates in vegetables produced in plastic greenhouses and its health burden in Shaanxi Province, China. Sci. Total Environ. 696, 133921 (2019).
He, L., Li, Z., Jia, Q. & Xu, Z. Soil microplastics pollution in agriculture. Science 379, 547 (2023).
Kianpoor Kalkhajeh, Y. et al. Environmental soil quality and vegetable safety under current greenhouse vegetable production management in China. Agricult. Ecosyst. Environ. 307, 107230 (2021).
Wang, H., Zheng, J., Fan, J., Zhang, F. & Huang, C. Grain yield and greenhouse gas emissions from maize and wheat fields under plastic film and straw mulching: a meta-analysis. Field Crops Res. 270, 108210 (2021).
Hu, Y., Zheng, J., Kong, X., Sun, J. & Li, Y. Carbon footprint and economic efficiency of urban agriculture in Beijing—a comparative case study of conventional and home-delivery agriculture. J. Clean. Prod. 234, 615–625 (2019).
Four Decades of Poverty Reduction in China: Drivers, Insights for the World, and the Way Ahead (World Bank, 2022).
Zhang, X. et al. A large but transient carbon sink from urbanization and rural depopulation in China. Nat. Sustain. 5, 321–328 (2022).
Ge, Y. et al. Mapping annual land use changes in China’s poverty-stricken areas from 2013 to 2018. Remote Sens. Environ. 232, 111285 (2019).
Boulestreau, Y., Peyras, C.-L., Casagrande, M. & Navarrete, M. Tracking down coupled innovations supporting agroecological vegetable crop protection to foster sustainability transition of agrifood systems. Agric. Syst. 196, 103354 (2022).
Wanner, P. Plastic in agricultural soils—a global risk for groundwater systems and drinking water supplies?—a review. Chemosphere 264, 128453 (2021).
Aguilar, M. Á. et al. Evaluation of the consistency of simultaneously acquired Sentinel-2 and Landsat 8 imagery on plastic covered greenhouses. Remote Sens. 12, 2015 (2020).
Aguilar, M. A., Nemmaoui, A., Aguilar, F. J. & Qin, R. Quality assessment of digital surface models extracted from WorldView-2 and WorldView-3 stereo pairs over different land covers. GISci. Remote Sens. 56, 109–129 (2019).
Mendoza-Fernández, A. J., Peña-Fernández, A., Molina, L. & Aguilera, P. A. The role of technology in greenhouse agriculture: towards a sustainable intensification in Campo de Dalías (Almería, Spain). Agronomy 11, 101 (2021).
Reiner, F. et al. More than one quarter of Africa’s tree cover is found outside areas previously classified as forest. Nat. Commun. 14, 2258 (2023).
Acharki, S. PlanetScope contributions compared to Sentinel-2, and Landsat-8 for LULC mapping. Remote Sens. Appl. Society Environ. 27, 100774 (2022).
Acharki, S. & Kozhikkodan Veettil, B. Mapping plastic-covered greenhouse farming areas using high-resolution PlanetScope and RapidEye imagery: studies from Loukkos perimeter (Morocco) and Dalat City (Vietnam). Environ. Sci. Pollut. Res. 30, 23012–23022 (2023).
Huete, A. R. et al. Amazon rainforests green-up with sunlight in dry season. Geophys. Res. Lett. 33, 6405 (2006).
Tatem, A. J. WorldPop, open data for spatial demography. Sci. Data 4, 170004 (2017).
Pekel, J.-F. F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).
Esch, T. et al. Breaking new ground in mapping human settlements from space—The Global Urban Footprint. ISPRS J. Photogramm. Remote Sens. 134, 30–42 (2017).
Sumbul, G., Charfuelan, M., Demir, B. & Markl, V. in Bigearthnet: A Large-Scale Benchmark Archive for Remote Sensing Image Understanding 5901–5904 (IEEE, 2019).
Tan, M. & Le, Q. Efficientnet: rethinking model scaling for convolutional neural networks. In International Conference On Machine Learning 6105–6114 (PMLR, 2019).
Global Administrative Unit Layers (GAUL). FAO https://data.apps.fao.org/map/catalog/srv/eng/catalog.search?id=12691#/metadata/9c35ba10-5649-41c8-bdfc-eb78e9e65654 (2015).
Thenkabail, P. S. et al. Global Cropland-Extent Product at 30-m Resolution (GCEP30) derived from landsat satellite time-series data for the year 2015 using multiple machine-learning algorithms on Google Earth Engine Cloud. United States Geological Survey https://doi.org/10.3133/pp1868 (2021).
Zhou, Y., Liu, Z., Wang, H. & Cheng, G. Targeted poverty alleviation narrowed China’s urban–rural income gap: a theoretical and empirical analysis. Appl. Geogr. 157, 103000 (2023).
Zomer, R. J., Xu, J. & Trabucco, A. Version 3 of the Global Aridity Index and Potential Evapotranspiration Database. Sci. Data 9, 1–15 (2022).
NOAA National Centers for Environmental Information. ETOPO 2022 15 Arc-Second Global Relief Model (NOAA National Centers for Environmental Information, 2022).